
research papers

616 doi:10.1107/S0108767310024876 Acta Cryst. (2010). A66, 616–625

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 28 March 2010

Accepted 24 June 2010

# 2010 International Union of Crystallography

Printed in Singapore – all rights reserved

A special class of simple 24-vertex polyhedra and
tetrahedrally coordinated structures of gas hydrates

M. I. Samoylovicha* and A. L. Talisb

aCentral Research and Technology Institute ‘TechnoMash’, Moscow, and bInstitute of Organo-

element Compounds of the Russian Academy of Sciences, Moscow. Correspondence e-mail:

samoylovich@technomash.ru

It is established that the eight-dimensional lattice E8 and the Mathieu group M12

determine a unique sequence of algebraic geometry constructions which define a

special class of simple 24-vertex, 14-face polyhedra with four-, five- and six-edge

faces. As an example, the graphs of the ten stereohedra that generate most

known tetrahedrally coordinated water cages of gas hydrates have been derived

a priori. A structural model is proposed for the phase transition between gas

hydrate I and ice.

1. Introduction

The possibility of realizing ordered solid structures in three-

dimensional Euclidean space E3 is determined to a consider-

able extent by its topological properties, one of which is the

non-integer nature of the maximum number, equal to

5.104 . . . , of regular tetrahedra with a common edge. Ulti-

mately, this allows one to approximate the densest non-lattice

sphere packing by statistical partitions into simple (three

edges meeting at every vertex) 14-face polyhedra with four-,

five- and six-edge faces (Coxeter, 1961; O’Keeffe, 1998;

Delgado-Friedrichs & O’Keeffe, 2005; Komarov et al., 2007).

One such polyhedron is a truncated octahedron [46, 68] with

six square and eight hexagonal faces that make up the

Dirichlet polyhedron for the body-centred cubic (b.c.c.)

lattice. A dual to the [46, 68] polyhedron is the subdivision

of the sphere into 24 triangles, which serves as a basis for

the derivation of the simple 24-vertex, 14-face polyhedra

[4n, 512�2n, 6n+2] given by Delgado-Friedrichs & O’Keeffe

(2005).

In 1887 William Thomson (Lord Kelvin) considered the

possibility of partitioning E3 into polyhedra of fixed volume

and minimal surface area. The partition he found consisted of

(slightly curved) [46, 68] parallelohedra and corresponded to

the structure of sodalite or gas hydrate IV. The local minim-

ality of the surface (which determines conservation of volume

under small perturbations) is an important factor in the

stability of the structure. The search for the solution to

Kelvin’s problem has continued and it was established by

Weaire & Phelan (1994) that the partition made up of [512]

dodecahedra of equal volume and [512, 62] tetrakaidecahedra

is closer to the solution and corresponds to the (distorted)

structure of gas hydrate I. Kelvin’s [46, 68] polyhedron and the

polyhedron [512, 62] belong to the class of simple 14-face

polyhedra [4n, 512�2n, 6n+2]. In particular, this class contains ten

stereohedra (n = 2, 3, 4, 6), which generate 23 crystallographic

tetrahedrally coordinated partitions of E3 (Delgado-Friedrichs

& O’Keeffe, 2005). A mathematical formalism based on

algebraic geometry constructions for the derivation of such

crystallographic tetrahedrally coordinated networks has been

put forward by Delgado-Friedrichs et al. (1999).

Kocian et al. (2009) demonstrated that the symmetry of

crystalline and discrete ordered structures can be described

within a unified formalism of the theory of manifolds (differ-

ential geometry). The apparatus of algebraic geometry has

been used to determine the graph of a special polyhedron, the

truncated icosahedron (Kostant, 1995). The latter required the

extension of the rotation group of the icosahedron Y = T � C5,

isomorphic to the projective special linear group PSL2(5), to

the product T � C5 � C11, isomorphic to PSL2(11), where T is

the group of rotations of the tetrahedron, and C5 and C11 are

cyclic groups. Kostant (1995) pointed out the correspondence

between the icosahedral group and the root system (formed by

the 240 vectors of the first coordination sphere) of the root

lattice E8 of the maximal semi-simple exceptional Lie algebra

e8 (Humphreys, 1975; Conway & Sloane, 1988).

The vector space E3 forms a Lie algebra with respect to the

vector product, so ultimately it determines a connection

between manifolds, topological invariants of polyhedral

surfaces and invariants of the corresponding algebras. In the

approach developed by the authors, one of the constructions

for realizing this connection is an ‘algebraic’ polytope. Vertices

of this polytope (on the sphere S3, situated in E4) are deter-

mined by the subsystem of 8In vectors of the system E8; In = 2,

8, 12, 14, 18, 20, 24, 30 are invariants of the E8 lattice. These

structures include the polytope {5, 3, 3}, which is a locally

minimal manifold determined by the system H4 (obtained

from E8) and generates a partition of S3 into 120 dodecahedra

{5, 3}. Algebraic polytopes allow one to define a special class of

helicoids – Gosset helicoids (Samoylovich & Talis, 2007c) –

with screw axes (crystallographic and non-crystallographic,

integer and non-integer), which contain the well known

(Coxeter, 1973; Mosseri et al., 1985) non-integer axis 30/11 of

the polytope {3, 3, 5}. The Gosset helicoids, determined by



invariants of E8, are realized in ordered (crystalline and non-

crystalline) structures, in particular in gas hydrates. For

example, Gosset’s rod assembly of tetrakaidecahedra and

dodecahedra with 12/5 and 10/3 axes determines the crystal-

line structures of the I and II types (Samoylovich & Talis,

2007c; Samoylovich et al., 2009).

The discussion above suggests that this formalism may be

employed for a priori derivation of a special class of 14-face

polyhedra [4n, 512�2n, 6n+2], whose ‘progenitor’ is Kelvin’s

polyhedron [46, 68] – the Dirichlet polyhedron of the b.c.c.

lattice. The solution of this problem is the main objective of

this work, whose results, in particular, allow us to propose a

model of structural phase transitions in gas hydrates.

2. The incidence table of the graph of Kelvin’s
polyhedron and constructions of algebraic geometry

Kelvin’s polyhedron [46, 68] has the symmetry group Oh = Th [

mdTh, and its vertices belong to two congruent right icosa-

hedra,

½46; 68� ffi f3; 5gr [mdf3; 5gr; ð1Þ

where md is a diagonal symmetry plane of the cube and Th is

the symmetry group of the right icosahedron {3, 5}r (a right

icosahedron has eight regular triangles and 12 isosceles ones).

Every vertex of {3, 5}r is surrounded by three vertices of

md{3, 5}r and vice versa; hence [46, 68] may be viewed as a

three-dimensional analogue of the polytope {240} (Mosseri et

al., 1985) – the union of two right icosahedra via a second-

order symmetry element (Fig. 1a).

According to Galois’ proof, the set of p involutions is

invariant with respect to the PSL2(p) group, p = 3, 5, 7, 11. It

was shown by Kostant (1995) that the set of vertices of the

icosahedron is isomorphic to a collection of cosets of the

maximum possible (p = 11) group PSL2(11):

Y=C5 $ PSL2ð11Þ=B ¼
[12

i¼1

giB; gi =2B ¼ C5 � C11; ð2Þ

where PSL2(11) is the automorphism group of the projective

line PL(11), which lies in the Mathieu group M11 as a subgroup

of index 12. The parallelohedron [46, 68] is the union [equation

(1)] of two congruent 12-vertex (right) icosahedra. Thus, for

the analogous [equation (2)] symmetry of its graph one has to

use the maximum subgroup of the symmetric group S12 (of

permutations of 12 symbols) that corresponds to equation (1)

and equation (2). The group 2M12 is such a group (an exten-

sion of the Mathieu group M12 by the second-order element),

whose set of cosets by M11 is isomorphic to a collection of

vertices [46, 68],

Oh=C1v $ 2M12=M11 ¼
[12

i¼1

2giM11 ¼
[144

i¼1

gi2PSL2ð11Þ; ð3Þ

where 2 is a cyclic group of the second order, whose non-trivial

element maps two non-conjugate subgroups M11 of the group

M12 onto each other. The group 2M12 is the automorphism

group of the manifold Q, which uses the basis vectors xi, i 2

PL(11) over the Galois field GF(3) (Conway & Sloane, 1988).

The group M12 contains the subgroup Mn � S12�n, n = 8, 9, 10,

11, which maps a certain subset of vectors from Q onto itself

and determines the following representation. It may be shown

that there exists a parabolic subgroup of an algebraic group

(Humphreys, 1975) isomorphic to Mn � S12�n, which is gener-

ated by involutions corresponding to a certain subset of root

vectors of the system E8. In the end, this allows one to

establish an isomorphic correspondence between a subsystem

of the system E8 and a subset of vectors from Q. A paral-

lelohedron is called M-equivalent to the parallelohedron

[46, 68] if it is mapped onto [46, 68] by a transformation which

preserves the number of vertices, edges and faces and is

included in 2M12.

A particular case of the space of the main fibration E! S4

(the S3 fibre) is the Hopf fibration S7
! S4 (the S3 fibre). In the

case of the vector fibration one must use the fibration with the

edge @E which is homeomorphic (and is not necessarily

diffeomorphic) to the S7 sphere only when the first-class

homology � 2 H4 (S4, Z) is true. One can show that the

structure on a sphere is guaranteed to be smooth by the use of

the root vectors of the E8 system limited onto S7; these vectors

determine vector sets which, in turn, determine polytopes onto

S3. The root lattice E8 corresponds to the densest packing of

spheres S7 in E8. The sphere S7 is, in its turn, the main fibration

space for the group SU(2), which as an algebraic variety
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Figure 1
(a) White and black vertices of the parallelohedron [46, 68] are also
vertices of ‘white’ and ‘black’ right icosahedra. (b) The incidence table
(IT) determining the graph of the parallelohedron (a). The columns of
the IT correspond to white vertices of the parallelohedron and give black
neighbours of a white vertex. The rows of the IT correspond to black
vertices, and black dots correspond to edges. Bold lines distinguish in the
IT a 9 � 9 diagonal block that determines an 18-vertex sub-graph of the
parallelohedron shown in bold lines. Thinner bold lines distinguish the 3
� 3 sub-blocks. A black dot within a circle signifies an edge, dividing a
side-face octagon of the parallelohedron into a square and a hexagon; the
sub-blocks containing such symbols are shown in light grey.



corresponds to S3 (Manton, 1987; Dubrovin et al., 2001). The

fibration S3
! S2 (the S1 fibre) is not reduced to the direct

product S2
� S1; therefore, it does not ensure a direct transi-

tion to substructures on S2. In the approach of Mosseri et al.

(1985), a transition from S3 to structures in E3 is implemented,

for example, by an additional operation of a polytope rolling

over E3.

Let us show that a direct transition from E8 substructures to

substructures on S2 (in E3) is possible. The construction of the

main fibration over the sphere Sn may be viewed as a union of

two discs Dn
þ and Dn

�, intersected by the equator Sn�1. If the

elements of the manifold lie on geodesics (analogue of straight

lines in Euclidean space), then any vector tangent to a

geodesic lies in this manifold. The sphere S2, considered as

such a geodesic and a locally minimal submanifold in SU(2), is

denoted by S2
0. From S2

0 one may move to the union of two

discs (hemispheres) D2
þ0 and D2

�0, which are intersected by

the equatorial circumference S1
0, corresponding to a one-

parameter group SU(2). The disc D2
0 can be chosen as the

central section of the sphere S7 by the plane E3, drawn through

the origin in E8, and the circumference S1
0 (the equator of the

disc) can be put in correspondence with a great circle in the

sphere S7 (Dubrovin et al., 2001). If fundamental vectors of the

system E8 are restricted on the sphere S7 while S1
0 is defined as

a subgroup of the diagonal matrices (torus subgroup) of the

group SU(2), then invariants of E8 can be put in correspon-

dence with elements of D2
0. Any transformations of D2

0 without

loss of local minimality are reduced to rotations about S1
0,

which are automorphisms of the group SU(2). Therefore, the

D2
0 disc is also used for setting vectors from the E8 system and

(as distinct to S1
0) in the final construction of polyhedra on S2.

The above allows one to consider the algebraic submanifold,

corresponding to a manifold of vectors directed to edge

centres of such a polyhedron on S2, as a discrete subset of a

homogeneous symmetric space:

S2 ffi SUð2Þ=Uð1Þ ffi S3=S1 ! ½ðD2
þ0 � S1Þ [ ðS1 �D2

�0Þ�=S1
0:

ð4Þ

The relations in equation (4) allow one to move from the Hopf

fibration S3
! S2 (the S1 fibre), used traditionally, to consid-

eration of algebraic varieties (covers) taking into account the

discrete nature of S1
0 and S2

0, as well as a certain manifold M,

given on S3,

MðS3Þ ! S1
0 ðthe S2

0 fibreÞ; ð5Þ

where S2
0 = D2

þ0 [D2
�0. Setting the S3 sphere as (D2

� S1) [

(S1
� D2) permits one to use the foliation as a variant of a

fibration. While @(D2
� S1) is a torus T2, we use corresponding

vectors of the E8 lattice to set a fibre of co-dimensionality 1

onto an S3 sphere: by such consideration one obtains a closed

diffeomorph to the T2 fibre restricted by the domain (D2
� S1)

with a two-dimensional fibre.

Under the mapping of S3 into the complex projective line

CP1, corresponding to equation (5), any point of S3 is in

correspondence with its equivalence class in CP1 and, simul-

taneously, the inverse image of every point in CP1 is a

circumference S1 = [exp(i’)]. In such an approach, the

symplectic group SP(1) ffi S3 consists of unitary transforma-

tions of two-dimensional complex space C2, preserving a skew-

symmetric Hermitian form. For real vectors, the condition of

skew symmetry in fact defines a two-form � (Daniel & Viallet,

1980). For two-dimensional real surfaces the Euclidean scalar

square coincides with the Hermitian one and then � actually

coincides with it. It can be shown that � is in correspondence

with one-parameter subgroups, given by invariants of E8, and,

therefore, the definition of � (as a square) corresponds to

equations (4) and (5). A symplectic structure on S3 can be

obtained using coincidence of the group SP(1) of unitary

quaternions with SU(2). The following conversion to real

form according to C2
! CP1

!M(CP1)! � [where M(CP1)

is a discrete structure on CP1] allows one to put in corre-

spondence with a two-form � a discrete 12-element sub-

manifold as well as the corresponding symplectic discrete

24-element structure.

A manifold furnished by a simplectic structure (a closed

differential non-singular two-form onto the smooth even-

dimensional manifold) is called symplectic. It is significant in

the local algebraic approach that a tangent space in each point

of such a manifold is a vector space [SP(V2n)], and the

condition for closeness makes a correspondence in it between

an askew-symmetric product and nearby points in such a way

that the local geometry of symplectic manifolds is a universal

one. Each dense commutative group of the SP(V2n) type lies in

some T n torus with elements of this torus being conjugated in

the symplectic group. The unit S3 sphere is determined by unit

quaternions (q) as the projective manifold and corresponds

to three-dimensional space E3, while transformations of the

type qxq�1 (x-quaternion) describe rotational operations of

the Euclidian space E3. In the framework of such an approach

the symplectic group SP(1) ffi S3 consists of unitary transfor-

mations of a complex space C2, such transformations conser-

ving the askew-symmetrical form. In accordance with the

Darby theorem (see Arnold & Givental, 2000) the symplectic

manifolds having the same dimensionality are local diffeo-

morphs (locality is described by the algebras only for the

groups considered) and transformed into each other by

symplectic transformations (Arnold & Givental, 2000). Using

integral submanifolds (Dubrovin et al., 2001) permits one to

use corresponding collections of hyperplanes (i.e. seven-

dimensional planes) normal to the root vectors of the E8

lattice in order to establish a correspondence between

submanifolds of symplectic (even number of dimensions) and

contact (odd number of dimensions) geometries.

In a (2n + 1)-dimensional contact manifold, an integral

submanifold of the field of hyperplanes of dimension n is

called Legendre’s submanifold. Discrete Legendre’s fibrations

with Legendre’s fibres contain fibrations of the type in equa-

tion (5). A choice of a Lagrange section [equation (5)]

determines a cotangent fibration of the base, which gives as a

result a subdivision to a subsystem of vectors of the E8 system.

For instance, for the 240 vectors of the system E8 such parti-

tioning leads to eight subsystems containing 30 vectors each.

By shifting the origin into a deep hole of the E8 lattice
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(Conway & Sloane, 1988) one singles out 144 vectors from the

240, forming a subsystem E8(hole), which corresponds to the

second decomposition in equation (3). For E8(hole) the

partition defined in equation (5) leads to eight subsystems of

18 vectors. Summing up the above, we obtain the relations

E8ðholeÞ ! MsðS
3
Þ ! MsðS

2
0Þ  � MðCP1

Þ  CP1
 C2;

ð6Þ

where Ms(S3) and Ms(S2
0) are discrete symplectic structures on

S3 and the fibre of the Legendre fibration [equation (5)]

corresponding to it on S2
0, respectively.

An equatorial section (starting from a cell) of the 24-vertex

polytope {3, 4, 3} by the ‘plane’ E3 gives a cuboctahedron, and

the sections of the north and south hemispheres parallel to it

give + and � octahedra. The centres of all 96 edges of the

{3, 4, 3} polytope represent the vertices of the sn-{3, 4, 3}

polytope (Coxeter, 1973); while moving from the north to the

south pole these vertices can be divided into 12 edge centres of

the ‘arctic’ (+) octahedron, 24 north edge centres, 24 edge

centres of the equatorial cuboctahedron, 24 south edge

centres and 12 edge centres of the ‘antarctic’ (�) octahedron.

In the case where the edge centres of the octahedra are

omitted, one obtains a polytope having {72} vertices which is

symmetric relative to the equatorial plane of the {3, 4, 3}

polytope. The centres of 24 edges of the cuboctahedron are

vertices of a rhombicuboctahedron which can be subdivided

into subsets of 2(2 � 6) equatorial vertices. Similarly, the

remaining nonequatorial 48 vertices of the {72} polytope can

be subdivided into 2(2 � 12) subsets. In view of equations (5)

and (6), the subsystem E8(hole) of 2[2(2 � 18)] vectors of E8

determines polytope {72} as an algebraic polytope situated on

S3 with 72 = 2(2 � 18) vertices, whose 2 � 18 vertices deter-

mine one of the two fibres of S2
0, consisting of 18 vertices on

the disc D2
þ0 and 18 vertices on the disc D2

�0. It can be

shown that the 18 = 6 + 12 vertices on the disc D2
þ0 (D2

�0)

correspond to six equatorial and 12 nonequatorial vertices of

polytope {72}.

A transition to the fibration associated with equation (5)

determines a redistribution of vertices on S2
0 from 36 = 2(6 +

12) to 36 = 12 + 24, which corresponds to the sum of invariants

12 and 24, as well as to the structure of 24 elements, put in

correspondence with �. The system E8 is a seven-scheme

lattice, according to which the invariant 24 can be written as 24

= 3(7 + 1), where 7 is the index of E8 (Conway & Sloane, 1988).

Summing up the above, we obtain

72 ¼ 2� 2ð6þ 12Þ ¼ 2½ð6þ 6Þ þ ð21þ 3Þ�; ð7Þ

which reflects the partitions of the set of vertices of the

algebraic polytope {72} considered above.

The sphere S3 can also be given as a Stiefel manifold V4,1,

which (after complexification) is a universal cover for the

Grassmanian manifold Gc
2;1. This manifold corresponds to

midpoints of the minimal geodesics of the group SU(2);

therefore, it is possible to bring into correspondence with the

vertices on S2
0 the midpoints of edges of the polyhedron, which

also form minimal geodesic subsets. For the polyhedron

representing a joining of two equivalent polyhedra, the set of

edge midpoints can be given by an incidence table (IT), where

a column is in correspondence with a ‘white’ vertex of one

polyhedron, a row is in correspondence with a ‘black’ vertex of

the second polyhedron, and the incidence symbol corresponds

to the edge joining these vertices (Kraposhin et al., 2008). In

other words, an IT is a polyhedron connection table with two

kinds of vertices (such as the IT of [46, 68], Fig. 1).

There is a single variant of an IT which satisfies the system

of relations in equations (3), (6) and (7), namely, the 12 � 12

IT of a dichromatic graph of the parallelohedron [46, 68],

where the incidence symbols fill 36 cells (Fig. 1b), corre-

sponding to 36 vectors, reflected on S2
0. The dichromatic pair of

the graph’s vertices is in correspondence with the involution;

hence, the IT reflects the connection between an affine space

and a vector representation (generated by an involution) of

Weyl’s group of the system E8. The symplectic nature of the

structure on S3 is reflected in the right icosahedra (white and

black) on S2
0 and in placing only three incidence symbols into

each row (column) of the IT. The icosahedron is the most

symmetric triangulation of the sphere, in which five triangles

meet at every vertex; hence every column (row) meets five

columns (rows) in three rows (columns). The correspondence

of E8 to a subsystem Q from equation (3) determines a

partition of the IT into 3� 3 blocks, each of which can contain

one or two triples of symbols, determined by the addition table

of GF(3). The first decomposition in equation (7) corresponds

to a partition of the IT into four 6 � 6 blocks, in which each of

the two diagonal blocks contains 12 symbols. The second

decomposition in equation (7) corresponds to the partitioning

of the IT into 9 � 9 and 3 � 3 diagonal blocks (with 21 and

three symbols in each), determined by the mapping of M12 into

M9 � S3 (Fig. 1b). It can be shown that the 24 symbols in the

diagonal blocks are in correspondence not just with Horo-

witz’s group, but also with the system of vectors (roots) D4.

The D4 lattice is self-dual: D4 = D�4 	 D�3 ¼ A�3 , where A�3 is a

b.c.c. lattice (Conway & Sloane, 1988), and hence this relation

determines [46, 68] as a parallelohedron – the Dirichlet poly-

hedron of b.c.c.

In Coxeter (1950) the configuration 123 of the finite

projective geometry was introduced, formed by 12 (white)

points and 12 ‘lines’ (black points); here each ‘line’ consists of

three points, and each point is traversed by three lines. The

incidence graph of this configuration is {12} + {12/5} or a

‘Nauru graph’. If there is a variety from v elements, a t-(v, k, �)

scheme is a set of subvarieties (blocks) from k elements

so that each t element is contained in the � blocks. If � = 1 then

the scheme is called a Steiner system S(t, k, v) and the finite

projective geometry PG(2, q) is a Steiner system S(2, q + 1,

q2 + q + 1). The projective geometry prohibits the formation

of rectangles out of incidence symbols in the IT – if they

did form rectangles, two different straight lines would run

through two points of the finite projective plane. In the IT in

Fig. 1(b) this prohibition is satisfied only within the 9 � 9

diagonal block. This allows one to view the IT in Fig. 1(b) as IT

123(M9 � S3), which could be inserted into the incidence table

of the corresponding t-(v, k, �) scheme (Samoylovich & Talis,

2007b).
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3. Simple 24-vertex polyhedra with four-, five- and six-
edge faces M-equivalent to the parallelohedron [46, 68]

The conservation of the algebraically essential part of the

conditions in equations (4)–(6) (according to the unitary

restriction principle) permits one to turn the graph of

the parallelohedron [46, 68] into a simple 24-vertex graph

M-equivalent to it. In particular, for IT 123(M9 � S3) two

requirements are algebraically essential: the inclusion of the

9 � 9 sub-table into the IT of the (93)2 configuration of a finite

projective geometry (Talis, 2004) and the equality of the

number of symbols in diagonal blocks to the corresponding

invariant of E8. Taking into account equation (6) and the

existence of the invariants of E8 (18, 24, 30), all of them

divisible by 3, the number of symbols in the diagonal blocks in

IT 123(M9 � S3) must be {(3(7 + f) [ 3(1 + | f |)}, f = 0, 
1. The

higher invariant 30 corresponds to the joining of 24 symbols

of diagonal blocks in IT 123(M9 � S3) with six symbols of two

sub-blocks of non-diagonal blocks. If such sub-blocks are

10–12 � 1–3 and 7–9 � 10–12 then the 30-value sub-table

IT 123(M9 � S3) determines a hexagonal prism with two parallel

hexagons as bases and six octagons as sides, each of which is

divided by the interior horizontal edge into 4- and 6-gons. In

the non-diagonal blocks in IT 123(M9 � S3) such edges are

determined by the symbols of the sub-blocks 10–12 � 4–6 and

4–6 � 10–12, which we shall refer to as horizontal (Figs. 1a,

1b). By connecting vertices having the same colour by the

interior edge, the octagon can be divided into two 5-gons. The

replacement of 2k dichromatic edges of the graph by mono-

chromatic edges (between vertices of the same colour)

requires one to discard 2k IT symbols and to introduce 2k

arrows, which (in terms of projective geometry) determine the
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Figure 2
Incidence tables, Schlegel diagrams determined by them for graphs of stereohedra, and stereohedra [44, 54, 66]. Bold lines in the ITs distinguish diagonal
blocks 9� 9 and 10–12� 10–12. The double arrow at the left (top) of each IT determines the ‘incidence’ of two rows (columns), which corresponds to an
edge between vertices of the same colour. The ITs are different from one another only in the light-grey blocks, where there are circles within circles,
denoting discarded (compared with the IT in Fig. 1b) incidence symbols. On the Schlegel diagrams determined by the ITs the quadrilaterals are shown in
dark grey, hexagons are striped and the hexagon at the base is shown by vertical hatching. The edges of pentagons in the Schlegel diagram of the
tetrakaidecahedron are shown as dotted lines. Under each diagram is given the number of the stereohedron (in which the quadrilaterals are shown in
light grey) as determined by Delgado-Friedrichs & O’Keeffe (2005) and Komarov et al. (2007). The space groups according to Delgado-Friedrichs &
O’Keeffe (2005) and Komarov et al. (2007) are given under each stereohedron.



‘incidence’ between a vertex and a vertex (a line and a line).

Only diagonal blocks are algebraically essential, and hence a

decrease of the number of incidence symbols is possible only

in non-diagonal blocks. By skipping the interior (horizontal)

edges in two adjacent side octagons, one of them can be

divided by the new dichromatic edge into 4- and 6-gons while

the second can be divided by a monochromatic edge into two

5-gons. The latter determines the possibility for the step-by-

step skipping of symbols in the horizontal sub-block: firstly,

one skips two symbols, corresponding to skipped edges, then a

new symbol is introduced, corresponding to a new edge.

Summing up the above, let us determine the requirements

for IT 123(Mn � S12�n), which gives a simple 24-vertex graph

M-equivalent to [46, 68]: the block n� n is inserted into the IT

configuration n3 of the finite projective geometry, and the

structure of the entire IT is given by the relation

2½3þ ð3� k
j
iðf ÞÞ� [ fð3ð7þ f Þ [ 3ð1þ jf jÞg þ �ðk; f Þ ¼ 36;

ð8Þ

where the square brackets and braces contain the number of

symbols in the non-diagonal and diagonal blocks, respectively;

�(k, f) = 2ki
j( f) � 3( f + | f |) is the number of monochromatic

arrows. From here on, instead of representing a given ITwith a

symbol such as IT 123(Mn � S12�n), we shall use the symbol

IT MnS12�n( f, k); for example, the graph of the parallelo-
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Figure 3
Incidence tables, Schlegel diagrams of graphs of stereohedra, and stereohedra [42, 58, 64]. The same notation as in Fig. 2 is used. In IT No. 10 light-grey
stripes distinguish the shifts of incidence symbols, as compared with IT No. 9.



hedron [46, 68] will be characterized by the symbol

IT M9S3(0, 0).

Let us consider all M-equivalent polyhedra (clusters) whose

graphs are determined by IT M9S3(f, k), satisfying equation

(8). The conditions f = 0, ki
j(0) = 0, 1, 2, � = 2k imply the

replacement of 2k side faces [46, 68] by 2k pairs of 5-gons

according to

½46; 68
� ffi ½ð4 [ 6Þ6�2k; ð4 [ 6Þ2k; 62

� $ ½ðð4 [ 6Þ2Þ3�k; ðð52
Þ

2
Þ

k; 62
�

ffi ½46�2k; 54k; 68�2k
�; ð9Þ

where (4 [ 6)2 and (52)2 are 10-cycles, appearing upon uniting

a pair of side octagons or two pairs of 5-gons. The variant k = 0

corresponds to the parallelohedron [46, 68] (Figs. 1a, 1b); k = 1

corresponds to stereohedra Nos. 2, 3, 8 (Fig. 2); and k = 2

corresponds to stereohedra Nos. 5, 7, 9 (Fig. 3). The stereo-

hedron No. 10 (Fig. 3) is determined by the IT that arises from

the IT for No. 9 under the action of the element m of 2M12(3);

hence we denote this polyhedron by the symbol [42, 58, 64]m.

The transformation m is determined by the additional subdi-

vision of 21 vertices in equation (7) into 20 (i.e. invariant of

E8) and 1.

By definition, IT M9S3(0, 0) gives a parallelohedron; hence,

the possibility for an M-equivalent polyhedron to be a

stereohedron (that is, to generate a crystallographic subdivi-

sion of E3) must be determined by conservation of some part

of IT M9S3(0, 0). In IT M9S3(0, 0) the hexagons of the bases

correspond with the symbols in the 9 � 9 block, and the three

pairs of parallel squares correspond to pairs of symbols of two

horizontal sub-blocks. The assemblage of [46, 68] by parallel

square faces in the sodalite structure leads to a rod with a

symmetry axis, for instance, along the direction [100],

belonging to the layer (001). It is evident that in order to

obtain a three-dimensional structure one must place [46, 68]

along a direction not lying in (001), for example, along [111],

that is, along the faces of parallel hexagons. Thus, in a

three-dimensional crystalline structure, generated by an

M-equivalent polyhedron [46, 68], there must be rods assem-

bled by 4-gonal as well as by 6-gonal faces. The 2(3 � ki
j( f))

horizontal symbols are responsible for the existence of 4-gonal

faces. Therefore, IT M9S3(f, k) may determine a stereohedron

for k � 2 and the tetrakaidecahedron [512, 62] given by IT

M9S3(0, 3) is not a stereohedron (Fig. 4a). In the general case,

this formalism is able to determine polyhedra M-equivalent to

[46, 68] that are not stereohedra (O’Keeffe, 1998).

The conditions f = 1, k = 3, �= 0 give an IT in which there are

no rectangles formed by incidence symbols (not allowed in

finite projective geometry). The latter means that the graph

[612] determined by such an IT may be isosceles in E3 only

after discarding a certain number of triplets of edges. Actually,

assuming that the six symbols being discarded in the small

diagonal block correspond to hypothetical edges, the graph

{[612]}6 is the graph of a 24-vertex (30-edge) stereohedron of

crystalline ice (Fig. 4b), determined by IT M9S3(1, 3).

The graph of the dodecahedron [40, 512, 60] is determined by

the 10 � 10 IT of a sub-configuration of the Desargues

configuration (Talis, 2004). The 10 � 10 IT of another sub-

configuration of the configuration 103 (Talis et al., 2007)

contains 24 incidence symbols and determines the ‘minor’

dodecahedron [43, 56, 63] (Fig. 5a). By analogy with the above

case of M9S3(f, k), it is possible to show that the 10 � 10 IT

M10S2(f, k) block can be inserted in IT 103, and the structure of

the entire IT is determined by the relation in equation (8), for

f = 0 and by the value k(0) = 4, incompatible with M9. The

simple 24-vertex polyhedron [43, 56, 65] determined by IT

M10S2(0, 4) is stereohedron No. 4 (Fig. 5b). Like the

construction of stereohedron No. 10 by the IT of stereohedron

No. 9, stereohedron No. 6 can be constructed by the IT

Mm
10S2(0, 4), determining the stereohedron [43, 56, 65]m (Fig.

5c).

The 8 � 8 sub-table of the IT for a configuration 83 deter-

mines a 16-vertex isosceles polyhedron 2Z8 with seven non-

planar hexagonal faces (Talis, 2004). The polyhedron 2Z8 is

determined only by the condition of minimality of the number

of additional vertices and edges, which transforms a regular

partition of the sphere into 4-gons (cube) into a non-regular

one of seven hexagons. The graph 2Z8 is inserted in the graph

of the polytope [4, 3, 3], whose symmetry group of order 24(4!)

is inserted in the group M8 � S4. Discarding a single edge and

adding four leads to a simple ten-face polyhedron [(42)2, 41;

52, 63], in which two pairs of 4-gons have common edges (Fig.

6a). It can be shown that the extension of the 8 � 8 sub-table,

determining [(42)2, 41; 52, 63] to IT M8S4(�1, 2), gives simple

24-vertex 14-face polyhedra, containing isolated 4-gons. Thus,

IT M8S4(�1, 2) determines stereohedron No. 4 (Fig. 6b). By

analogy, one can construct IT Mm
8 S4(�1, 2), reducing stereo-
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Figure 4
(a) An IT and the tetrakaidecahedron determined by it, in which the
edges between vertices of the same colour are shown by double arrows.
(b) An IT and the ice (or wurzite-type structure) cluster determined by it,
whose hypothetical edges (dashed lines) are represented by empty circles
in the IT. Without the dashed sub-block the 9 � 9 block in the IT
coincides with the blocks in the IT in part (a) and the IT in Fig. 1(b),
which determine an 18-vertex sub-graph of 24-vertex polyhedra (clusters)
shown by bold lines.



hedron No. 6 to the polyhedron [43, 56, 65]m (Fig. 6c). The

transformation m corresponds to the determination of the 18

invariant of the E8 lattice by adding 1 to its exponent 17 [the

algebraic polytope 136 = 8 � 17 has been considered in detail

by Samoylovich & Talis (2008)].

4. Mutual transformations of M-equivalent polyhedra
as a structural mechanism for local phase
transformations

M-equivalence of the simple 24-vertex polyhedra given by IT

M9S3(f, k) determines the structural basis of the chain of

(direct and reverse) local phase transitions, for example, gas

hydrate$ice (structure of bonded water). Actually, in all

cases considered, the IT contains a 21-symbol 9 � 9 sub-table,

insertable in IT (93)2. The polyhedron given by such a sub-

table arises within a prismatic treatment [46, 68] upon joining

[by equation (9)] pairs of side-face 8-cycles into 10-cycles.

Discarding interior vertices and edges in 10-cycles leads to an

18-vertex 21-edge graph (of two base hexagons and three side-

face 10-cycles) which is common to all the polyhedra (clusters)

considered. The existence of such an invariant water cage

allows one, in particular, to propose a model of (direct and

reverse) local phase transitions for gas hydrate I$ice.

According to Weaire & Phelan (1994), the surface of the 10-

cycle (4 [ 6)2 in the parallelohedron [46, 68] (Fig. 1a) is greater

than the surface of the 10-cycle (52)2 in the tetrakai-

decahedron (Fig. 4a); hence for the exit of a guest molecule via

a side-face 10-cycle it is necessary to transform the tetra-

kaidecahedron into one of the M-equivalent polyhedra

according to the mechanism in equation (9). In general,

different variants of transformations between polyhedral

intermediates are possible (Figs. 1a, 2, 3), enabling the exit of

the guest molecule. The remaining empty water cage

‘implodes’ into an ice cluster, decreasing the size of the inner

cavity to the volume of the cluster [(6 [ 6)3, 62], with the 18-

vertex graph defined earlier,

½512; 62
� $ ½46�2k; 54k; 68�2k

�

$ f½612
�g

6
	 ½ð6 [ 6Þ3; 62

�; ð10Þ

where the side-face 10-cycle consists of two 6-cycles, with a

common interior edge (Fig. 4b). The relations in equation (10)

also determine the reverse process of gas-hydrate formation,

beginning with the increase in volume of the water cluster

[(6 [ 6) 3, 62] due to discarding of interior edges in side-face

10-cycles. After the entrance of the guest molecule into the

cavity thus formed within {[612]}6, the molecule is ‘fixed’ due to

formation of six additional bonds, transforming {[612]}6 into

one of the polyhedra [46�2k, 54k, 68�2k]. The chain of trans-

formations [equation (9)] further leads to a tetrakaideca-

hedron with the guest molecule inside.

5. Conclusion

Space groups are the discrete groups of rigid motions in E3,

the elements of these groups acting on the structure as a

whole. The need for the apparatus developed here is due to:

firstly, the incompleteness (partiality) of the mapping of the

symmetry for space subdivision into polyhedra by such groups;
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Figure 5
(a) The IT of a sub-configuration of Desargues configuration 103 and Schlegel diagram determined by it for a ‘minor’ dodecahedron [43, 56, 63], whose
triple axis goes through the white and black vertex 1. Roman numerals denote the ‘equatorial’ belt of squares and hexagons; triples of pentagons around
the axis are shown by Arabic numerals. (b), (c) ITs and Schlegel diagrams of stereohedra [43, 56, 65] determined by them. The 10� 10 blocks differ from
the IT in part (a) by the absence of three symbols, shown by empty circles. In the IT in part (c) the light-grey stripe marks the shift of the incidence symbol
as compared to the IT in part (b). Similarly positioned polygons on Schlegel diagrams (a)–(c) are marked with the same numbers.



and, secondly, the incompleteness of the mapping of the

polyhedral symmetry by their point subgroups. In fact, with

the same point-symmetry group the simple 24-vertex and 36-

edge polyhedra Nos. 5 and 9 with the same set [42, 58, 64] of

faces are distinguished by two edges only, corresponding to

the incidence symbol and arrow in the incidence table (Fig. 3).

Hence the mutual transformation of stereohedra is effected by

a local (non-rigid) transformation which could not be deter-

mined at the level of the symmetry groups but is given by the

incidence tables determined by the invariant of the algebraic

geometry constructions. Crystallographic subdivisions of E3

generated by given stereohedra have the same group Pbcn;

hence their mutual transformation is effected by reconstruc-

tions conserving the invariants of constructions of algebraic

geometry considered here, but not by the subgroup of the

Pbcn group as in the classic theory of second-order phase

transformations. It is evident that an adequate description of

such structural phase transformations is impossible, in prin-

ciple, in the framework of the space group apparatus.

The system of constructions of algebraic geometry allows

one, in the end, to single out a special class of polyhedra whose

‘progenitor’ is Kelvin’s polyhedron. Besides a more complete

reflection of the symmetry of certain polyhedra, the proposed

formalism is also necessary for describing the symmetry of

polyhedra joining together. Examples include nanostructures,

widely considered in recent times, for which, in contrast to

crystals, there is no unique mathematical definition. In our

approach to the definition of nanostructures, a local self-
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Figure 6
(a) The 8� 8 block of the IT configuration (93)2 determines a partition of the cube into seven hexagons, by decorating the edges by ‘square’ vertices and
separating the face by a dashed edge. Discarding this edge and drawing dash–dotted edges leads to the polyhedron [45, 52, 63], on whose Schlegel
diagram the sequence of four- and six-vertex figures is shown in Roman numerals. (b), (c) When comparing 8 � 8 blocks in these ITs with the IT in part
(a) and among themselves the notation is the same as in Figs. 5(b) and (c).



assembly principle may be proposed (Samoylovich & Talis,

2007a), where the initial (starting) elements of the system

already contain the structural and self-organization rules

which are determined by the condition of the maximum

possible conservation of topological invariants of the system

and its subsystems. Note that, in this case, all basic concepts of

the standard approach are preserved and possible sets of

vector representations of non-crystallographic groups are

considerably extended (Humphreys, 1975; Shcherbak, 1988;

Conway & Sloane, 1988); their use is inevitable in the study of

nanostructures. In such a system the transitions between its

subsystems, invariant with respect to various algebras, are

difficult, which diminishes the system’s susceptibility to

instabilities of external conditions. The proposed approach is

in full agreement with a well known quote by I. Prigogine

(made in his Nobel lecture) concerning an amazing ability of

structured systems to organize in similar ways under

substantially different external conditions.
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